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The detailed structure of the heteropoly salt Nag(CrMosOzHs)-8H0 has been determined using three-dimensional X-ray

diffraction data.

The crystals are triclinic, space group PI, with cell dimensions ¢ = 10.9080 (4) A, b = 10.9807 (4) &,
= 64679 (2) A, o = 107.594 (2)°, 8 = 84.438 (2)°, and v = 112.465 (3)° at 25°.

There is one formula unit per unit

cell. Final refinement by least-squares analysis with anisotropic temperature factors resulted in an R value of 3.3%. The

anion has the same structure as the TeMosO.6~ anion with excellent agreement of comparable bond distances.

Charge

balance and hydrogen-bonding arguments suggest that the hydrogen atoms of the anion are bonded to the oxygen atoms
which are coordinated to the Cr atom. The anions are linked together through sodium octahedra and hydrogen bonding.
No hydrogen atoms could be located directly, but a reasonable hydrogen-bonding scheme was inferred from short oxygen-

oxygen distances.

Introduction

Prior work3—" has established the existence and prob-
able isomorphism for the heteropoly 6-molybdo anions
of the following central trivalent ions: Cr, Al, Fe, Co,
Rh, and Ga. Recent work has shown that these an-
ions have a — 3 charge in solution*® and that the central
ion is octahedrally coordinated.f-%1 The observation
that some of these salts could be completely dehydrated
at moderate temperatures (200° or less) without, ap-
parently, destroying the anion was originally inter-
preted* as evidence that all of the water in these salts
was merely water of crystallization. This conclusion
led to the postulation of an erroneous dimeric struc-
ture.®* However, later work by some of the same
workers® and others!! definitely established the mono-
meric nature of the anion in solution. In 1960, Agar-
wala!? investigated the 6-tungstonickelate(II) anion
and concluded that this complex definitely contained
constitutional water and had the formula NiWeOqHe* .
The heavy-atom arrangement was found to be consis-
tent with the structure originally proposed by Ander-
son'® and later found by Evans'* in the TeMosOs®~
anion. The similarity of the 6-tungsto and 6-molybdo
anions, plus the evidence already cited concerning the
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anion charge and monomeric nature, led Tsigdinos® to
conclude that the 6-molybdochromate anion and its
isomorphs most probably had the Anderson-Evans
structure or one very closely related to it, and his ex-
planation of exchange mechanisms for these anions was
based on the assumption of such a structure.

In view of the considerations of the confusing dehy-
dration results and the importance of the work on the
6-molybdoheteropoly anions which depend on struc-
tural assumptions, it was felt that a complete X-ray
structure determination of a member of this class of
heteropoly compounds would be of value. The sodium
salt of the hexamolybdochromate(II) anion, which has
been described by Tsigdinos® as Naz(CrOsMosOrssp-
H,,) (11 — #)H,0O, was chosen as a representative
compound.

Experimental Section

Crystal Preparation.—Large, well-formed single crystals of
Na;(CrOsMogO1s4nHz ) - (11 — #)H,0 were obtained using a slight
modification of the procedure described by Tsigdinos.® The pH
of a solution containing 145 g of Na:MoQ:-2H,0 in 300 ml of
water was adjusted to 4.5 with concentrated HNQ;. A second
solution was made by dissolving 40.0 g of Cr(NOs);-9H:0 in 40
ml of water. Half of each solution was mixed together, and the
mixture was boiled for 1 min and filtered while hot as recom-
mended by Tsigdinos. The filtrate was set aside in a 1500-ml
beaker covered with a ribbed watch glass. Cystallization
started in 1 hr. The solution was allowed to stand for 2 weeks
before the precipitate was filtered off and washed several times
with cold water. Apparently too much evaporation had taken
place because, along with the desired reddish purple crystals,
some colorless crystals and some green crystals had, also, pre-
cipitated. However, there was no intergrowth of the three pre-
cipitates and the desired crystals were easily picked out and
stored in sealed bottles.

The remaining halves of the original solutions were mixed
together without heating and stored in a sealed bottle. Within
1 day reddish purple crystals were formed, and after 3 weeks a
sizable crop had precipitated that was free of the unwanted
products of the previous procedure. This crop was filtered off,
washed with cold water, and stored in sealed bottles.

X-Ray powder patterns and single-crystal procession films
showed the reddish purple products of the two procedures to be
identical, and all further work was done using the uncontaminated
crop.

An attempt was made to recrystallize some of the material
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from water in an effort to get smaller, well-shaped crystals.
The recrystallized product looked very much the same in color
and general morphology, but X-ray examination showed it to be
a new phase different from both the original compound and its
dehydration products. This new phase is being investigated.

The original crystals readily lose water when exposed to the
atmosphere and decompose to a pink powder., For the X-ray
powder patterns the crystals were ground in Vaseline. For the
single-crystal film work the crystals were coated with Canada
balsam or shellac. This was found to be adequate protection
for a few days but not for a long enough time to permit a com-
plete set of intensity data to be obtained from one crystal. A
small single crystal sealed in a thin-walled Pyrex capillary with
some saturated mother liquor was protected indefinitely. This
technique was used with the crystal from which the final X-ray
intensity data were obtained.

Dehydration Results.—Weight loss was measured on ground
samples exposed to the atmosphere at room temperature and on
large crystals heated on a recording balance. The results con-
firm the presence of a total of 11 water molecules (weight loss:
caled, 16.19,; obsd, 16.09;) per empirical formula unit and
indicate the existence of a stable, lower hydrate containing five
molecules of water per empirical formula unit. The sample dried

at room temperature attained constant weight after a weight
loss approximating six molecules of water (weight loss:
obsd, 8.4%,).

caled,

8.8%; A recording balance trace (Figure 1) re-

~ WEIGHT LOSS

TEMPERATURE -

TIME -

Figure 1.—Weight loss (solid line) and temperature {dashed
line) vs. time curves. The first break in the weight loss curve
corresponds to the loss of six HyO molecules and the second to
the loss of five more H,O molecules, One unit on the ordinate
axis corresponds to a weight loss of 1 mg (weight loss curve) or
1-mV potential change across the Pt—Pt-109, Rh thermocouple
(temperature curve). The abscissa is time increasing to the
right. The heating rate was 6°/min. The center of the inter-
mediate plateau is observed at 200° and the cessation of weight
loss occurs at approximately 330°.

veals that the water is lost in two stages, with six water molecules
being readily lost at temperatures of about 200° and five addi-
tional water molecules being lost at more elevated temperatures
(about 300°). There appears to be no distinction between the
loss of water of hydration and constitutional water in the second
stage. X-Ray powder patterns show the lower hydrate to bea
distinct crystalline phase.

Crystal Data

Morphology.—The rapidly grown crystals varied
widely in morphology. Crystals which grew slowly or
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had the opportunity to perfect themselves generally
showed a tabular habit with a tendency to elongate
in one direction. Referred to the unit cell used in this
paper, the dominant form is {010} and the secondary
forms are {100} and {001}. The direction of elonga-
tion is the ¢ axis, The crystals have perfect (010)
cleavage,

Unit Cell and Space Group.—The cell data are given
in Table I. The crystals are triclinic. The unit cell
directions indicated by the morphology were found
to provide a convenient unit cell and this was adopted.
The Laue symmetry and approximate unit cell di-
mensions were obtained from precession films. Final
cell dimensions were determined from a least-squares
refinement at 19 high-angle reflections (26 > 150°)
measured at 25° on the goniostat using Ni-filtered
Cu Koy radiation (A 1.54051 A). A 1° takeoff angle
was used for these measurements.

TasLE I
CrysTAL DATA®

10.9080 (4) A

a = Space group P1

b = 10.9807 (4) A

¢ = 6.4679 (2) A Z =1

a = 107.594 (2)° Density (obsd) = 2.950 g/cm?
B = 84.438 (2)° Density (caled) = 2.995 g/cm?
vy = 112.465 (3)°

¢ Values in parentheses are the standard deviation as computed
by the least-squares program and refer to the last decimal place.

The crystals were tested for a piezoelectric effect
with negative results, suggesting that the probable
space group is PI rather than P1. The space group
was assumed to be PT and the successful structure
determination proved this assumption to be correct.

Density measurements (Table I), made on a Berman
microbalance using toluene as the immersion liquid,
established that there is one formula unit per unit cell.

Collection and Reduction of Intensity Data

Single-crystal intensity data were obtained using
the stationary-crystal, stationary-counter method. The
crystal used was a fragment roughly approximating a
rectangular prism with dimensions of 0.203 X 0.224 X
0.294 mm. It was sealed in a thin-walled Pyrex cap-
illary (0.03-mm wall thickness) with the long direction
approximately parallel to the capillary axis. Complete
three-dimensional data to 26 = 60° were measured
with a General Electric counter diffractometer using
molybdenum radiation (A 0.71069 A) and a 8 filter
of 0.025-mm thick niobium. A 4° takeoff angle was
used. The detector was a scintillation counter equipped
with a pulse-height analyzer set to pass the central
909 of the Mo K« peak. Attenuation filters of niobium
were used on all reflections for which the unattenuated
peak intensity exceeded 20,000 counts/sec so that all
measurements were within the linear response range
of the equipment.

Angular settings were computed® from the refined

(15) The angular settings and data reduction to F values were done using
programs written by F. A. Mauer of the National Bureau of Standards.
All other computations were done with the appropriate programs of the X-
Ray 63 system, Technical Report TR-64-6, Computer Science Center, Uni-
versity of Maryland, 1964.
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8 191 199 =8 847  Bo7 -1 195 658 630 =2 563 =543 -5 4 99 -a2 9 260 255 -3 389 =3%% 165 -165 & 266 270
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12 38 2 -k 649 643 3 sk 2 552 -546 .1 8 w2 =ss -2 227 =221 1161 =139 161 =159 1 203 -2
-3 230 246 & 527 P54 3 108 -115 0 9 239 ~243 A1 37s =26 2 342 341 2 2 260 -251
to=1Ur=3 -2 750 7 5 58 256 =261 4 53«26 1 10 335 =338 g 5« =27 3 250 217 266 259
-3 k12 427 =1 1399 152 6 396 173 =167 5 415 =432 2 11223 =233 1255 =256 4 372 =377 152 =138 Homd19
-2 653 670 0 26 39 7 174 136 =130 6 279 =278 3 2 3+ 16 5 139 136 139 =135 0 159 ~171
-1 3or =63 1 95 8 152 161 =156 7 3. 4 he-lle6 3 A0 66 6 250 251 160 1S3 1 67 =40
0 120 142 2 117« 1199 9 26 295 =370 8 143 1e2 5 520 543 & 36s =50 7 138 =152 2 66wy
1 7sB 817 3 0% 1082 10 35e 226 =215 9 213 =307 6 -2 38> 392 § 229 -225 8 2386 =238 Hr=2e 3 3 -2
2 285 281 4 189 =199 11 187 §9 =51 10 222 =227 7 =i 149 =162 & 38 57 9 2mp 233 1 197
3 167 =14y 5 390 393 12 38 229 -228 11 22% 213 ) 0 4Dk 823 7 3T# =4 10 212 207 =4 €96 703 Hi=519
4 395 399 6 1380 1%ib 413 -406 12 123 =118 9 1632 eus 8 215 =211 =3 142 135 o 79 T2
5 726 723 7 25 199 Hi=1304 270 =275 10 2 s 33 Hr=9,7 -2 a1 =69 1 113 100
& BL =70 B 1g6 97 =2 211 156 =156 Wrm3rh 1 3 o4 w3 Hi=Tr=6 -4 145 =187 =1 517 532 2 520 526
7 85 =94 9 612 613 -1 85 517 =511 -ig 255 =2hp 4 543 536 -1 226 =235 -3 37 -15 0 $85 597 3 289 293
8 556 s 1c 824 838 o 77 216 =212 =9 354 351 5 385 376 0 227 =227 2 271 =285 85  -aQ
9 423 W35 il 127 -119 1 692 368 =36 -8 248 236 -8 6 159 ~is2 1 122 119 =1 247 =254 2 25¢ 253 Hi=6+9
10 251 =256 12 “27 2 35+ 87 =7 208 =206 -7 7 143 56 2 37e =25 0 70 =56 3 753 765 1 126 =132
11 208 215 13 olo &3 3 91 125 =120 =6 1l  #97 - 8 513 500 3 236 =240 1 125 =119 ¢ 400 40 2 320 33w
14205 305w 783 63 a76 =5 4kz Wkl -5 9 4 b8 <82 2 88 =75 5 174 =187 3 332 338
Ho=11e=3 s 33 213 =197 <4 169 165 -4 10 202 =20 5 77 77 3 159 <16k b6 450  u5S
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7 157 ~155 =2 192 176 He=1414 =4 206 =210 5 28 0 5 4 w63 459 & =37 Hr=10» 172 0
8 439 w16 =1 777 741 0 38+ 21 =3 173 =155 & 43 8 € 5 590 89 7 243 207 -3 w21 e} 2 116 108
9 377 w08 0 202 10 1292 309 -2 608 e85 7 110 -117 7 6 3ue -u3 8 269 282 -2 324 3b0 3 512 52

« The columns are, respectively, %, 10sF,, and 10F,, where s = 0.51007. An asterisk designated an unobservable reflection which has
been assigned the estimated minimum observable F,.
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cell dimensions and a wavelength of 0.710688 A. Back-
ground readings were taken at 26 — !/,A29 and at
26 + '/,A20 where A28 = 1.80 4 1.0 tan @ is the scan
range recommended by Alexander and Smith.'* The
counting time was 10 sec for a peak and each back-
ground. Two standard reflections were measured every
4 hr. The constancy of the standard reflection in-
tensity indicated no deterioration of the crystal during
the period of data collection. The scatter of the
standards was within =19, for a 13,000-cps peak
and £29%, for a 3000-cps peak from their mean values.

To convert the observed peak intensities (I,) to
integrate(j intensities ({;), 21 strong reflections spanning
the 20 range were measured by the 26 scan method. A
curve of Ii/I, vs. 28 was prepared and utilized to
obtain the conversion for each reflection.

A total of 3976 independent lattice points were mea-
sured resulting in a final set of data consisting of
3683 observed reflections (I, > 2¢(7)) and 293 unob-
served reflections. The unobserved reflections were
assigned intensities equal to 2¢(I) where ¢(I) = [P -
(BL -+ Bu)/4]/%. P, By, and By are the counts at
the peak, low-background, and high-background posi-
tions, respectively.

The intensity data were corrected for Lorentz and
polarizatiop factors but not for absorption. Based
on a calculated linear absorption coefficient of 32.13
cm~! the maximum error due to absorption for the
crystal size and shape used would be about 49, of
the intensities, which was considered negligible.

Structure Determination and Refinement

The structure was readily solved by conventional
Patterson and heavy-atom techniques. The assump-
tion of PT symmetry and the limitation of one unit
of Naz(CrMoeO.:Hs) - 8H,O per unit cell require that
the Cr atom and at least one Na atom must lie on
centers of symmetry. Therefore, the Cr atom was
placed at the origin. Approximate coordinates of the
Mo atoms were readily derived from a three-dimen-
sional Patterson synthesis. A structure factor calcula-
tion based on the Cr and Mo atoms supplied enough
correct phases to compute a three dimensional electron
density map which revealed all of the Na and O
atoms. The structure was then refined by full-matrix
least-squares techniques. The initial refinement using
individual isotropic temperature factors converged to a
conventional R value of 0.060 (computed for observed
data only). A difference synthesis at this point gave
no indication of misplaced atoms, but there were sug-
gestions of appreciable anisotropic motion for some
of the atoms. Consequently, the refinement was con-
tinued using individual anisotropic temperature factors
for all atoms to a final R value of 0.033 (observed
data only).

The least-squares program minimized the quantity
Ew(’Fo{ — ]Fc').z Throughout the refinement the ob-
served reflections were weighted as w = 25.5/F, for
Fo > 255 and w = 1.0 for F, < 25.5 where £, is the

(16) L. E, Alexander and G. S. Smith, Acta Crystallogr., 16, 983 (1962).
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scaled F, obtainable from Table II. The values quoted
in Table II are 10 times the scaled F,. The unob-
served reflections were weighted as w = 1.0 if F, >
F(min) and w = 0.0 if Ff, £ F(min) where F(min)
is the structure factor derived from the assigned thresh-
old intensity. All parameter shifts in the final cycle
were less than the standard error. The atomic scatter-
ing factors used were O~, Na+, neutral Cr, and neutral
Mo. "

An electron density difference map was computed
based on the final anistropic parameters. It was es-
sentially zero everywhere except for small areas of
negative electron density (—2 electrons/A%) at the
Cr and Mo positions which could indicate that these
atoms should have been chosen to have some positive
charge.

An examination of the final list of structure factors
reveals that the very strong reflections all tend to
have F, lower than F, which could indicate extinction
effects. However, since these reflections received very
small weights in the refinement, the application of
an extinction correction would have negligible effects
on the parameters. Therefore, the refinement was
terminated at this point.

Results and Discussion
The final parameters resulting from the anisotropic
least-squares refinement are listed in Table III (posi-
tional) and Table IV (thermal). The oxygen atoms
have been numbered so that chemically similar atoms
are grouped together. Anion oxygen atoms are O(1)

Figure 2.—View of the anion as projected onto the least-
squares best plane fitted to the Cr and Mo atoms. Large circles
are oxygen atoms, small open circles are molybdenum atoms,
and the small solid circle is the chromium atom. The oxygen
atoms of the upper layer have been numbered to conform to the
designations used in the present work.

through O(12) and the water molecules are O(13)
through O(16). The anion oxygens are grouped so
that O(1)-O(3) are each coordinated to one Cr and
two Mo atoms, O(4)-O(6) are each coordinated to
two Mo atoms, and O(7)-O(12) are each coordinated to

(17) “Interpational Tables for X—Ray Crystallography,” Vol. ITI, Kynoch
Press, Birmingham, England, 1962, pp 202, 210, 211,
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TaBLE III

PoSITIONAL PARAMETERS?®
Atom x ¥ z
Cr 0.0 0.0 0.0
Mo(1) 0.27552(3) —0.06622 (3) —0.00253 (5)
Mo(2) 0.28333 (3) 0.18775(3) —0.18424 (5)
Mo(3) 0.00896 (3) 0.25164 (3) —0.18745(5)
Na(1) 0.5 0.0 0.5
Na(2) 0.4368 (2) —0.4761(2) 0.2798 (3)
O(1) 0.1032(2) —0.0218(3) 0.2137(4)
0O(2) 0.1378(2) —0.0316 (3) —0.2052 (4)
0(8) 0.1096 (2) 0.1956 (2) 0.0359 (4)
0(4) 0.1257(3) —0.2381(3) —0.0254 (4)
0O(5) 0.3346 (3) 0.1285(3) 0.0352(4)
0O(6) 0.1442 (3) 0.1840(3) —0.3545(4)
o(7) 0.0745(3) —0.2336(3) 0.4139 (5)
0O(8) 0.3595(3) —0.0690(3) 0.2036 (6)
0(9) 0.3535(3) —0.1189(3) —0.2347 (5)
0(10) 0.3737 (3) 0.1349(4) —0.3964 (5)
o(11) 0.3685(3) 0.3616 (3) —0.0824 (5)
0(12) 0.1016 (3) 0.4217 (8) —0.0920 (5)
0(13) 0.2303(3) 0.3739(3) 0.3982(5)
0(14) 0.1422(7) —0.4243(5) —0.4236 (7)
Q(15) 0.3199 (b) —0.3612(5) 0.1805(14)
0(16) 0.4737 (4) —0.3616 (4) —0.3354(6)

@ The standard error in parentheses after each parameter is
for the last decimal place given and is derived from the full-
matrix refinement.

one Mo atom. A view of the anion projected
onto the least-squares best plane fitted to the Cr
and Mo atoms is shown in Figure 2. The anion
has the Anderson—-Evans!?:! configuration. The value
of » in the formula as previously written® is estab-
lished as 3. Arguments presented below indicate
the most likely sites for the anion hydrogen atoms
are on the oxygens coordinated to the central Cr
atom. On this basis the formula of the anion should
be written Cr(OH)¢Mo0¢O15*~, although, for the present
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work, it is written CrMosO24Hg®~ to retain the analogy
with the prototype anion TeMogOa8~.

Structure Description.—Views of the structure as
projected down the ¢ and @ axes are depicted in Figures 3
and 4, respectively. The structure can be considered
as consisting of columns of disk-like CrMosOHe®~
groups stacked along the ¢ axis. The plane of each
disk is tilted so that it is very nearly parallel to the
(2,8,11) plane. These stacks are held together pri-
marily through the linkage provided by the bonding
of anion oxygens to Na(l). The Na(l) coordination,
also, links neighboring stacks along the ¢ direction.
Additional direct bonding in the ¢ direction is provided
by hydrogen bonding utilizing two-thirds of the hy-
drogen atoms associated with each anion. A chain
of Na(2) octahedra, formed by sharing edges, runs
parallel to the ¢ axis through the center of the ab
face of the unit cell as shown in Figure 3. One of
the shared edges of the chain consists of two anion
oxygens, each from a different anion group, so that a
linkage between stacks of anions is provided in the
|110] direction, The Na(2) coordination is completed
by water molecules. Further bonding along the anion
stacks and between these stacks is provided by hy-
drogen bonding involving water molecules. One water
molecule, O(14), is not coordinated to any cation
and is held in the structure only through hydrogen
bonds.

The resulting structure is consistent with the ob-
served perfect cleavage parallel to (010). To cleave
along this plane at ¥ = 1/, only one Na-O bond and
four hydrogen bonds need to be broken for each unit
cell. To cleave along any other plane a minimum
of three Na~O bonds and more than four hydrogen
bonds must be broken for each unit cell.

The structure is, also, consistent with the easy loss

TABLE IV
THERMAL PARAMETERS®
Atom but (223 bas b1z bis b
Cr 0.00162 (6) 0.00208(7) 0.00470(16) 0.00040 (5) —0.00006 (8) 0.00088 (8)
Mo(1) 0.00226 (3) 0.00313(3) 0.00887 (8) 0.00095 (2) —0.00042 (3) 0.00101 (4)
Mo(2) 0.00222(3) 0.00295(3) 0.00738(8) 0.00048 (2) 0.00068 (3) 0.00124(3)
Mo(3) 0.00297 (3) 0.00274(3) 0.00657 (8) 0.00084 (2) —0.00021(3) 0.00139(3)
Na(1) 0.0090 (3) 0.0215(6) 0.0102 (6) 0.0118(4) 0.0019(4) 0.0053 (5)
Na(2) 0.0056 (2) 0.0060 (2) 0.0145(5) 0.0006 (1) 0.0001 (2) 0.0038(2)
o(1) 0.0023(2) 0.0028(2) 0.0042 (5) 0.0010(2) —0.0006 (3) 0.0008 (3)
0(2) 0.0018(2) 0.0024(2) 0.0036 (5) 0.0008(2) 0.0008(2) 0.0001(3)
O(3) 0.0021(2) 0.0018(2) 0.0040(5) 0.0004 (2) —0.0002 (2) 0.0005(3)
0O(4) 0.0024 (2) 0.0024(2) 0.0070 (6) 0.0007 (2) 0.0008 (3) 0.0008(3)
0(5) 0.0022 (2) 0.0024 (2) 0.0091 (6) 0.0001(2) —0.0019(3) 0.0007 (3)
0O(6) 0.0022 (2) 0.0036 (2) 0.0052 (5) 0.0008(2) 0.0005 (3) 0.0015(3)
o(7) 0.0056 (3) 0.0044(3) 0.0088(7) 0.0021(2) —0.0020(4) 0.0015(3)
O(8) 0.0043 (3) 0.0053 (3) 0.00156 (8) 0.0011(2) —0.0042 (4) 0.0021 (4)
0(9) 0.0036 (3) 0.0057 (3) 0.0124(7) 0.0025(2) 0.0027 (3) 0.0017 (4)
0(10) 0.0050(3) 0.0066 (3) 0.0120(8) 0.0031(3) 0.0043 (4) 0.0019 (4)
0O(11) 0.0029 (2) 0.0026 (2) 0.0113(7) —0.0002 (2) 0.0002(3) 0,0015(3)
0(12) 0.0044 (3) 0.0027 (2) 0.0117(7) 0.0005(2) —0.0000(3) 0.0017 (3)
0(13) 0.0046 (3) 0.0042(3) 0,0083(6) 0.0005(2) 0.0005(3) 0.0013 (3)
0O(14) 0.0258 (10) 0.0083 (5) 0.0155(10) 0.0110(6) 0.0060 (8) 0.0032 (6)
0O(156) 0.0084 (5) 0.0086 (5) 0.0882(35) 0.0014 (4) —0.0098(11) 0.0144(11)
0O(16) 0.0056 (3) 0.0058(3) 0.0177(9) 0.0012(3) —0.0014 (4) —0.0005(5)

¢ Anisotropic thermal parameters as defined by:

exp(—buh2 —_ bzzkz — baalz - 2b12hk - 2b13hl —_ 2b23k1)

The standard errors as

derived from the full-matrix refinement are given in parentheses and refer to the last decimal place given.
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Figure 3.—View of the structure as projected down the ¢ axis onto a plane normal to that axis.

and solid circles are Na atoms.
atoms are shown as solid lines.
donor (z.e., O—H:----- O shown as O—---0O).

is indicated for unit cell contents between 3 = —0.5 and z = 0.5.

of water from the crystals. The first water molecules
lost would probably be the O(14) molecules. These
molecules are held in the crystal only by hydrogen
bonds and lie in channels which are open to the (001)
face. It is reasonable to expect that once the O(14)
waters are gorne, some rearrangement of Na coordina-
tion and hydrogen bonding takes place which permits
other water molecules to escape.

Anion Details.—The complete list of metal-oxygen,
oxygen—oxygen, and metal-metal distances and all
angles with a metal vertex in the anion is given in
Table V. Atoms with no superscript have parameters
as given in Table III. Superscripted atoms have had
their original positions transformed by the operation
given in Table VI.

The Mo atoms closely approximate a regular planar
hexagonal configuration with the Cr located in its
center. The least-squares plane fitted to these atoms,
expressed in fractional unit cell coordinates, is de-
scribed by the equation 0.87445x - 3.6287y <+ 4.9772z
= 0 The maximum deviation from this plane is

Anion oxygens are at the octahedral corners or indicated by dots for hidden corners.
Postulated hydrogen bonds are shown as dashed lines with arrows to indicate the probable hydrogen
Bond lines ending in arcs are to the indicated atom in the cell below.
Only atoms involved in indicated bonding have been numbered.

Open circles are water molecules
Bonds to Na

Bonding

0.012 A. The range of nearest neighbor Mo-Mo dis-
tances is 3.309-3.351 A and the Cr-Mo distances
vary from 3.303 to 3.349 A. BEach metal atom is
coordinated by a distorted octahedron of oxygen atoms.
The Mo atoms are all displaced from the centers of
their octahedra toward the outer oxygens of the anion
so that all metal-metal distances are increased over
the values they would have in an undistorted con-
figuration. The observed distortions from ideal oc-
tahedra are in accord with generally accepted struc-
tural principals® and have been observed in several
similar compounds,®—22

The observed metal-oxygen distances are in good
agreement with other reported values. The Cr-O
distances vary from 1.968 to 1.986 A which may be
compared with the typical octahedral Cr3+-O distance

(18) A. F. Wells, “*Structural Inorganic Chemistry,” 2nd ed, Clarendon
Press, Oxford, 1950, p 93.

(19) J. F. Keggin, Proc. Roy. Soc. Ser. A, 144, 75 (1934).

(20) N. F. Yannoni, Doctoral Dissertation, Boston University, 1961,

(21) H.T. Evans, Jr., J. Amer. Chem. Soc., 90, 3275 (1968).

(22) D.D. Dexter and J. V. Silverton, ibid., 90, 3589 (1968,.
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Figure 4.—View of the structure as projected down the @ axis onto a plane normal to that axis.
The left side of the picture has been used to indicate probable hydrogen bonding and the Na atoms
The right side has been used to indicate the Na coordination and O(14), which is not coordinated to an Na

the same as for Figure 3.
have not been shown.
atom, has been omitted.

of 1.98 = 0.08 A.2* The Mo-O distances fall into
three ranges which depend on the oxygen coordination.
The longest distances (2.243-2.347 A, average 2.292 A)
are to oxygens coordinated to the Cr and two Mo
atoms [O(1), O(2), O(3)]. Intermediate Mo—-O dis-
tances (1.907-1.985 A, average 1.939 A) are to oxygens
coordinated to two Mo atoms [0(4), O(5), O(6)]. The
shortest distances (1.695-1.720 A, average 1.707 A)
are to oxygens coordinated to only one Mo atom
[O(7)-0(12)]. This same trend has been found in
TeMogOsf~ ion where the comparable average Mo-O
distances were found to be 2.299, 1.943, and 1.714 A2
and in the CeMo;204%~ ion where average values of
2.28, 1.98, and 1.68 A have been reported.?? Similar
ranges have been reported for other molybdate struc-
tures containing octahedral MoQOs groups joined by
edge sharing, eg., 1.67-2.56 A in molybdenum
bronzes?*:% and 1.67-2.33 A in Mo0;.%

The oxygen—metal-oxygen angles in the anion de-
viate widely from the 90° angle expected for an ideal
octahedron, but this is simply a consequence of the
distortions resulting from the outward displacements
of the Mo atoms and the shortening of oxygen—oxygen
distances of shared edges.

Sodium Coordination.—Both types of sodium atoms
may be considered to be in distorted octahedral sur-
roundings. The pertinent distances and angles are
listed in Table VII.

The sodium on a center of symmetry, Na(l), is co-
ordinated to anion oxygens exclusively and its oc-

(23) Seeref 17, p 266.

(24) J. Graham and A. D. Wadsley, Acta Crysiallogr., 20, 93 (1966).

(25) N. C. Stephenson and A. D. Wadsley, 7bid., 18, 241 (1065).
(26) L. Kihlborg, Ark. Kemi, 21, 357 (1063).
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tahedron is isolated from all other sodium polyhedra.
Oxygens from four anions are coordinated by a single
Na(1) ion.

A Na(2) octahedron includes a pair of anion oxygens,
each from a different anion, and four water molecules.
The Na(2) octahedra are linked by edge sharing, of
centrosymmetrically related O(11) atoms and O(16)
atoms, to form a chain parallel to the ¢ axis.

The range of Na—-O distances (2.307-2.536 A) found
in this structure is well within the range 2.25-2.78 A
found in other compounds?® containing sodium coor-
dinated to six oxygens.

Hydrogen Sites on the Anion.—The structure deter-
mination has established that the anion contains 24
oxygen atoms. From the known valence states of the
various atoms in the anion and the net charge of the
anion it is clear that six hydrogen atoms must be in-
cluded in the anion. As expected, the hydrogen posi-
tions could not be observed even in the electron density
difference map. However, the following considerations
of possible hydrogen bonds and local charge distribu-
tions strongly support the conclusion that the anion
hydrogen atoms are bonded to the oxygens which
are coordinated to the Cr atom.

There is no evidence to suggest that the hydrogen
atoms violate the symmetry of the crystal, so it can
reasonably be assumed that there are only three anion
hydrogen atoms in the asymmetric unit. It would
appear reasonable, also, to expect the hydrogen atoms
to be bonded to oxygen atoms that would be chemically
equivalent in the isolated anion. There are three such
sets. In the asymmetric unit O(1), O(2), O(3) form

(27) Seeref 17, p 258.
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TABLE V: ANION COORDINATION®
Distances Angles
Around Cr
Cr-0(1) 1.886 (3) O(1)-Cr-0(2) 85.12 (11)
Cr-0(2) 1.968 (3) 0O(1)~Cr-0(2)! 04,88 (11)
Cr=0(3) 1.972 (2) 0O(1)-Cr-0(3) 95,25 (11)
O(1)~0(2) 2.674 (4) O(1)~Cr~0(3)1 84.75(11)
O(1)-0(2)! 2.913 (4) 0(2)-Cr-0(3) 83,58 (10)
O(1)~0(3) 2.924 (5) O(2)~Cr-0(3)t 96.42 (10)
O(1)-03)t 2.667 (3)
0(2)~0(3) 2.628 (4)
O(2)-0(3)t 2.937 (3)
Around Mo(1)
Mo(1)-0(1) 2.347 (3) 0(1)-Mo(1}~0(2) 70,46 (10)
Mo(1)}~0(2) 2.289 (3) O(1)-Mo(1)-0(4) 70.53 (10}
Mo(1)-0(4) 1.943 (2) O(1)-Mo(1)-0(8) 81.20 (11)
Mo{1)-0(5) 1.926 (3) O()-Mo(1)-O(8) 05.28 (14)
Mo(1}-0(8) 1.703 (4) 0O(2)-Mo(1)-0(4) 82.45 (12)
Mo(1)—0(9) 1.708 (3) 0O(2)-Mo(1)~0(5) 72.03 (11)
0(1)-0(2) 2.674 (4) 0O(2)~-Mo(1)~0(9) 89.01 (15)
0(1)-0(4) 2.499 (4) O(4)-Mo(1)-0(8) 98.00 (14)
O1)-0(5) 2.799 (4) OA)~-Mo(1)-0(9) 098,34 (12)
O(1)~-0(8) 3.024 (5) O(5)-Mo(1)-0(8) 101. 34 (14)
0(2)-0(4) 2.801 (5) O(5)-Mo(1)-0(9) 101.74 (14)
0(2)~-0(5) 2.496 (3) O(8)-Mo(1)~0(9) 105.87 (18)
0O(2)~0(9) 2.832 (5)
0(4)-0(8) 2.757 (4)
0(4)-0(9) 2.767 (4)
Q(5)-0(8) 2.811(6)
0(5)-0(9) 2.822 (4)
O(8)-0(9) 2.722 (5)
Around Mo(2)
Mo(2)-0(2) 2,204 (2) O(2)~Mo(2)~0(3) 70.23 (9)
Mo(2)-0(3) 2.270 (3) 0(2)-Mo(2)-0(5) 71.77 (10)
Mo(2)--0(5) 1.934 (4) 0(2)~Mo(2)-0(6) 81.96 (11)
Mo(2)-0(8) 1.941 (3) 0(2)-Mo(2)-0(10) 93.69 (13)
Mo(2)-0(10) 1.699 (4) 0(3)~Mo(2)~0(5) 83.79 (12)
Mo(2)-0(11) 1.718 (3) O3} -Mo(2)-0(6) 71.95 (11)
0(2)-0(3) 2.626 (4) 0O(3)-Mo(2)-0(11) 92.03 (11)
0(2)-0(5) 2.4086 (3) 0O(5)-Mo(2)~-0(10) 100.69 (17)
0O(2)-0(B) 2.790 (5) O(5)~Mo(2)-0(11) 08.47 (14)
0(2)-0(10) 2.941 (4) 0O(8)-Mo(2)-0(10) 96.91 (16)
O(3)-0(5) 2,819 (5) O(8)-Mo(2)-0(11) 101.20 (15)
0(3)-0(8) 2.488 (4) 0(10)-Mo(2)-0(11) 105.18 (14)
0(3)-0(11) 2.894 (4)
O(5)-0(10) 2.801 (5)
O(5)-~0(11) 2.768 (5)
O(6)~0(10) 2.729 (5)
OB)~-0(11) 2.829 (4)
0(10)~-0(11) 2,712 (4)
Around Mo(3)
Mo(3)-0O)n 2.306 (3) O(1)1-Mo(3)~-0(3) 71.80 (9)
Mo(3)-0(3) 2.243 (3) O(1)1-Mo(3) O(4)! 72.05 (10)
Mo(3)-O4)! 1.907 (3) O(1)1-Mo(3)~-0(8) 82.83 (10)
Mo(3)-0(6) 1.985 (3) 0O(1)1-Mo(3)-0 (7)1 90.67 (13)
Mo(3)-0(7)1 1.720 (4) 0(3)-Mo(3)-0(4)1 84.00 (12)
Mo(3)-0(12) 1.895 (3) 0O(3)-Mo(3)~0(6) 71.82 (11)
O(1)1~0(3) 2.687 (3) O(3)~-Mo(3)-0(12) 02.84 (14)
O(1)1-O(4)! 2.499 (4) O(4)1-Mo(3)-0(7)! 102,48 (14)
O(1)1~0(6) 2,848 (3) O(4)1-Mo(3)-0(12) 99.05 (13)
O(1)1--0(7)t 2.893 (5) O(8)~Mo(3)-0O(7)t 94,50 (14)
O(3)-0(4)! 2,788 (4) 0O(6)-Mo(3)-0(12) 100.27 (13)
0(3)-0(8) 2.488 (4) O(7)1-Mo(3)-0(12) 105.96 (17)
0(3)-0(12) 2.877 (5)
OH1-0o(7)t 2.831(4)
O4)1-0(12) 2.744 (4)
O(6)-O(M) 2.728 (5)
O(8)-0(12) 2.830 (4)
0(7)1~0(12) 2,727 (4)
Metal-Metal
Cr-Mo(1) 3488 (4) Mo(1)-Cr-Mo{(2) 59.34 (1)
Cr-Mo(2) 3352 (3) Mo(2)-Cr-Mo(3) 60.17 (1)
Mo(3)-Cr-Mo(1)! 60.49 (1)

Mo(1)~-Mo(2) 3085 (5)
Mo(2)-Mo(3) 3279 (3)
Mo(3)-Mo(1)! 3510 (4)

= Distances (A) and angles (deg) within the anion. The
standard deviations are given in parentheses and were computed
using only the diagonal terms of the error matrix. The values
refer to the last significant figure quoted. Some oxygen—oxygen
distances have been repeated in order to group the complete
environment around each cation. The superscripts on the atom
designations refer to the operations as given in Table VI. Atoms
without superscripts have the parameters listed in Table III.

3.
3.
Cr-Mo(3) 3.3031 (4)
3,
3.
3.
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TaBLE VI
PARAMETER TRANSFORMATIONS?
Superseript mre—————~~Transformation—————-
1 ~x -y it
2 x y 1+2
3 1—u -y —2z
4 1+ 3z
5 1 —x 11—y —2z
6 14y 14z
7 1 - —y 1—3
8 v ¥ —14z
9 —x -1 —y -1 -z
10 —x 1—y9 -2

¢ Transformations used in obtaining distances and angles.
The %, ¥, z values are those listed in Table III,

TapLe VII
Sop1uM COORDINATION®

Distances Angles
Around Na(l)

Na(1)-0(8) 2.324 (4) O(8)-Na(1)~0(9)? 103.76 (1)
Na(1)-0(9)? 2.536 (3) O(8)-Na(1)~0(10)2 75.53 (12)
Na(1)-0(10)? 2,307 (4) O(8)-Na(1)-0(9)3 76.24 (11)
O{8)-0(9)? 3.826 (5) O(8)~Na(1)-0(10)3% 104.47 (13)
0O(8)-0(10)? 2,836 (4) 0(9)2-Na(1)-0(10)? 82.17 (13)
0(8)-0(9)* 3.005 (4 0(9)2-Na(1)~0(10)3 97.83 (13)
O(8)-0(10)3 3.661 (6)

0(9)2-0(10)2 3.187 (6)

0(9)2-0(10)3 3.683 (5)

Around Na(2)

Na(2)+-0(11) 2,453 (3) 0O(11)~-Na(2)4+-0(13) 85.03 (10)
Na(2)4+-0(13) 2.442 (4) 0(11)-Na(2)-0O(11)5 82.57 (11)
Na(2)4-0(11)s 2.475(3) 0O(11)~Na(2)¢+-0(15)+ 84.22 (20)
Na(2)¢-0(15)4 2.348 (9) O(11)-Na(2)4-0(16)3 85.74 (14)
Na(2)+-0(16)8 2.419 (4) 0(13)~Na(2)4-0(15)4 89.78 (19)
Na(2)4-0(16)3 2,458 (6) 0(13)-Na(2)4+-0(16)? 83.55 (15)
0(11)-0(13) 3.308 (4) 0(13)~Na(2)4-0(16)¢ 83.21(12)
0(11)-0(11)8 3.252 (3) 0(11)3-Na(2)¢~0(15)+ 89.55 (20)
O(11)-0(15)+ 3.220 (T O(11)5-Na(2)4+-0(16)* 94.93 (13)
O(11)-0(16)? 3.341 (6) O(11)5-Na(2)4-0(16)5 109.06 (12)
0(13)-0(15)4 3.381 (9) 0(15)4-Na(2)+0(16)6 101.62 (23)
0(13)-0(16)3 3.265 (8) 0(16)3-Na(2)+-0(16)6 87.06 (17)
0(13)~0(16)8 3.228 (4)

O(11)#-0(15)4 3.398(7)

0(11)%-0(186)3 3.635 (6)

0(11)-0(16)8 3.986 (5)

0(15)4-0(16)s 3.694 (10)

0(18)3-0(16)¢ 3.359 (6)

s Distances (A) and angles (deg) of Na coordination. Stan-
dard deviations and superscript significance are the same as de-
scribed for Table V.

one set, O(4), O(5), O(6) form a second set, and O(7)-
0O(12) form a third set. The last set can be eliminated
because it contains too many atoms, so the problem
reduces to a choice between sets 1 and 2. In Table
VIII are listed all of the close oxygen—oxygen pairs
which could reasonably be expected to be linked by
hydrogen bonds. The pairs O(1)-O(6) and O(2)-0(7)
are the only pairs not involving a water molecule. The
first pair is inconclusive as it involves oxygens from
both set 1 and set 2. The second pair involves oxygens
from set 1 and set 3. If the original assumption dis-
carding set 3 is valid and if these close contacts actually
are hydrogen bonds, then O(2) must be the donor
in the hydrogen bond to O(7). Therefore, if all the
postulated assumptions are valid, it may be concluded
that the anion hydrogen atoms are bonded to the oxy-
gen atoms of set 1 which are the oxygen atoms coor-
dinated to the Cr atom.

The same conclusion can be reached in a more
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satisfactory manner by applying the principle of de-
tailed neutralization of valence set forth by Pauling,?
who applied it to silicate structures, and extensively
used by Zachariasen?® for borate structures. Let the
index i denote a crystallographic species of atoms
having a formal positive chemical valence v;, while
the index j designates a crystallographic species of
negative valence —v;. If v;; (=v;;) represents the
valence strength assigned to a chemical bond of
length 7;; formed between atoms i and j, then the
principle states that the conditions

Zv;,— = i, Z‘Uii =~ Uj
i i

shall hold for all crystallographic species i and j.

To apply this principle to the present structure,
estimates of the bond strengths for Cri+-0O?= and
Mo%+-02= are needed. The Cr-O bond lengths are
essentially equal, within 0.02 A, so that the Cr valence
can be divided equally among its six neighboring oxy-
gens to yield a Cr-O bond strength of 0.5. The Mo-O
bond lengths vary over several tenths of 1 A and it
would be quite unrealistic to assign them equal bond
strengths. However, a good estimate can be obtained
by assuming a linear relationship between bond strength
and bond length. One point was obtained by assuming
the average of all the Mo~O distances (1.979 A) in
the present structure was equivalent to the average
ideal octahedral bond strength of 1.000 required for
Mo®+. The second point was derived in a similar
fashion from the results of Ibers and Smith¥ for the
compound NaCo, 3 (MoOs); in which all of the Mo
is hexavalent and tetrahedrally coordinated. Here it
was assumed that the average of all the Mo-O distances
(1.770 A) was equivalent to the average ideal tetra-
hedral bond strength of 1.500 required for Mo®+. From
these two points a straight-line plot of bond strength
vs. bond length for Mo-O bonds was obtained. The
summations around each Mo atom using points from
this curve

> (Mo(4)-0;) = 5.91,6.05, 6.06 for i = 1,2,3

1

are sufficiently close to the ideal value (6.00) that
the linear approximation may be accepted as a good
estimate. Ulsing the above estimates of bond strengths
for Cr-O and Mo-O bonds the valence balance around
the oxygens of interest (O(1)-O(6)) was computed
with the following results for Z (=2.00 ideally): O(1),
0.84; 0(2), 1.01; 0(3), 1.18; 04), 2.27; 0O(5), 2.23;
0(6), 2.07. Within the accuracy of the approximations
made O(4), O(5), and O(6) can be considered as bal-
anced, but O(1), O(2), and O(3) clearly need the
additional bond strength (~1.0) supplied by coor-
dination to a hydrogen atom.

Hydrogen Bonding—Since the hydrogen atoms
could not be located directly in the present work,
any proposed hydrogen-bonding scheme is necessarily

(28) L. Pauling, J. Amer. Chem. Soc., 81, 1010 (1929).

(29) W. H. Zachariasen, Acta Crystallogr., 18, 385 (1963).
(30) J. A. Ibers and G. W. Smith, ¢bid., 17, 180 (1964).
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speculative. A scheme based on short oxygen—oxygen
distances is generally considered highly probable if
all hydrogens can be utilized and if only one hydrogen
can be assigned to each short distance.?* Short O-O
distances which are part of a coordination polyhedron
are excluded from consideration.

A list of all potential hydrogen-bonding distances
under 3.1 A is given in Table VIII. Using these
distances and accepting the conclusion of the previous
section that O(1), O(2), and O(3) are hydroxyl oxy-
gens, a satisfactory scheme based on the above criterion
can be devised for all hydroxyl oxygens and the O(13)
and O(15) water oxygens. However, O(14), with five
short distances, has too many close contacts, and
O(16), with only one, has too few.

TaBLE VIII
PossIBLE HYyDROGEN BONDs*

Atom pair Distance, A Atom pair Distance, A
0O(1)-0(6)? 2.960(3) O(7)8-0(14) 2,949 (8)
0O(2)-0(7)" 2,706 (3) O(8)-0(15) 3.027(8)
0(3)-0(13) 2.629(3) 0(12)-0(14)* 3.015(7)
0(4)-0(14) 2,802 (5) 0(12)-0(15)¢ 2,897 (6)
O(5)-0(16)? 2.896 (4) 0(13)~0(14)' 2.652(8)
0(6)2-0(13) 2,832 (5) 0(14)-0(14)® 3.004 (10)

s Short oxygen—oxygen distances (<3.1 A) which suggest pos-
sible hydrogen bonds. Standard deviations and superscript
significance are the same as described for Table V. No pair of
oxygens coordinated to the same cation is included.

There are two possibilities for satisfying the O(14)
molecules. The three shortest O-O distances could
be chosen to yield a ‘“‘normal” configuration, or bi-
furcated hydrogen bonds could be postulated to utilize
all of the short O-O distances. Even though the
existence of stable bifurcated hydrogen bonds has
been unambiguously established by several high-pre-
cision X-ray and neutron diffraction studies,?! the first
possibility was chosen on the basis of the extremely
elongated thermal ellipsoid obtained for O(14). Use
of the three shortest O-O distances around O(14)
would give it a planar coordination which is essentially
normal to the longest principal axis of its thermal
ellipsoid.

The only possibility for O(16) is to assume that one
of its hydrogen atoms is not utilized for hydrogen
bond formation. This situation has been found to
exist in MgSO,-4H,0.%

The postulated hydrogen-bonding scheme is illus-
trated in Figures 3 and 4. Briefly, the situation for
each atom involved in the asymmetric unit is pos-
tulated as follows. Above and below are used in
reference to the relative z parameter. O(1l) donates
its hydrogen to an O(6) in the anion above. O(2)
donates its hydrogen to an O(7) in the anion below.
O(3) contributes its hydrogen to the water molecule
O(13). The O(13) water contributes its hydrogen
atoms to an O(6) in the anion above and to an O(14)
water molecule. 0O(14) donates one hydrogen to an

(31 W. H. Baur, tbid., 19, 909 (1965).
(32) W. H. Baur, tbid., 17, 863 (1961).
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TaBLe IX
S1zE AND ORIENTATION OF THERMAL ELLIPSO1DS®

Atom 1 iy o(N) 8(Y) 9(2) Atom i ag 6(X) 8y 6(2)
Cr 1 0.0888 42 48 87 0(6) 1 0.0940 115 95 26
2 0.0953 85 92 174 2 0.1112 143 115 1156

3 0.1080 132 42 95 3 0.1346 115 26 96

Mo(1) 1 0.1056 21 72 81 O(7) 1 (0.1116 59 92 31
2 0.1223 70 153 107 2 0.1415 78 164 100

3 0.1362 93 109 19 3 0.1790 34 T4 119

Mo(2) 1 0.0993 43 60 118 O(&) 1 (.1064 38 73 57
2 0.1181 88 135 135 2 0.1633 80 161 74

3 0.1371 133 60 122 3 0.2025 53 97 143

Mo(3) 1 0.1094 78 104 19 0(9) 1 0.1014 35 100 123
2 0.1139 107 160 101 2 0.1654 107 161 98

3 0.1287 21 103 105 3 0.177¢ 119 74 146

Na(l) 1 0.1178 17 100 77 0O(10) 1 0.0950 46 103 133
2 0.1357 7 102 163 2 0.1808 a8 167 80

3 0.3319 7T 16 99 3 (}.1955 45 88 45

Na(2) 1 0.1457 65 45 125 O(11) 1 0.0944 622 30 99
2 0.1669 113 115 144 2 0.1445 119 66 39

3 0.2021 35 125 96 3 0.1566 42 107 52

0O(1) 1 0.0836 64 77 30 O(12) 1 0.1112 79 14 99
2 0.1127 153 78 66 2 0.1509 85 100 169

3 0.1183 85 18 107 3 0.1650 12 100 83

0O(2) 1 0.0702 60 108 144 O(13) 1 0.1258 a9 77 16
2 0.1008 134 134 100 2 0.1324 116 152 82

3 0.1225 120 50 125 3 0.1797 28 114 76

O(3) 1 0.0846 77 42 51 O(14) 1 0.1350 113 34 67
2 0.0947 107 125 40 2 0.1781 84 112 23

3 0.1130 22 111 85 3 (.3680 24 66 87

O(4) 1 0.1028 44 78 132 O(15) 1 0.1742 128 45 110
2 0.1066 91 162 108 2 0.1909 138 132 92

3 0.1361 46 103 47 3 0.4232 105 76 20

Q(5) 1 0.0830 50 46 72 O(16) 1 0.1434 69 33 67
2 0.1248 57 135 63 2 0.1829 154 78 67

3 0.1465 57 97 146 3 0.2161 104 60 146

“ Principal axes of anisotropic temperature factors, referred to orthogonal axes X, ¥, Z.

X is along the crystallographic ¢ axis, ¥V is

normal to the (010) plane (i.e., along 5*), and Z is notmal to X and YV in a direction to form a right-handed coordinate system.
The root-mean-square displacements (#;) along the principal axes are in angstroms and the direction angles 8 are in degrees. No

errors were computed for these quantities.

O(7) in an anion below and the second to an O(4)
in an anion above. O(15) donates one hydrogen to
an O(8) of one anion and the other to an O(12) of a
second anion. O(16) donates one hydrogen to an
0O(5) and apparently leaves the other hydrogen un-
shared.

Thermal Motion.—In Table IX are listed, for each
atom, the root-mean-square displacements along the
principal axes of the thermal ellipsoid derived from the
anisotropic temperature factors and the orientation of
each ellipsoid relative to an orthogonal coordinate
system X, ¥V, Z. X is taken along the a axis, ¥ is
taken normal to the (010) plane (i.e., along b*), and Z
is oriented so as to form a right-handed orthogonal
system. Errors for these quantities were not ob-
tained. However, based on other X-ray structures
of comparable precision, it is estimated that the errors
in the displacements are in the third decimal place
and the errors in the orientation angles would be of
the order of several degrees.

There is always some doubt as to the reliance to
be placed on the magnitudes of the temperature factors
and the quantities derived from them, because errors
in quantities such as the form factors and absorption,
which are approximately an exponential function of

(sin 8)/\, can be compensated by adjustment of the
temperature factors. The relative magnitudes of the
thermal motion can usually be accepted as a good
qualitative indication in deciding whether one atom
moves more or less than another.

In the present case there are no data on strictly
equivalent compounds with which a comparison can
be made. However, comparison with some, not closely,
related compounds provides support for the physical
reasonableness of the values obtained in this study.

Anisotropic displacements for Mo in tetrahedral sur-
roundings range from 0.087 to 0.116 A in the com-
pound NaCo, 5 (M004)3.* This may be compared
to the range 0.099-0.137 A found for Mo in the pres-
ent work. The order of magnitude of the displace-
ments is the same for the two compounds. It is rea-
sonable that an atom in octahedral surroundings should
have slightly greater freedom of motion than the same
atom in tetrahedral coordination.

The anion oxygen displacements vary from a mini-
mum value of 0.084 A to a maximum value of 0.202 A.
No equivalent comparison data are available, but the
values observed for sulfate oxygens in MgSO,- 7H,0, 33
0.110-0.233 A, could be considered representative val-

(33) W. H. Baur, Acia Crystallogr., 17, 1361 (1064).
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ues for hydrated inorganic salts. More significant is
the observation that the trend of the displacement
magnitudes is in agreement with what would be ex-
pected from the structure. The oxygens with the
most ligands (O(1)-O(3)) have the smallest displace-
ments, O(4)-O(6) are intermediate, and O(7)-0(12),
with the fewest ligands, have the largest amplitudes
of motion. ‘

No thermal motion data could be found for a salt
which loses water of hydration as readily as Nag-
(CrMogOuHe) - 8H,0O. Tt is reasonable to expect the
water molecules to have equal or greater freedom
of motion than any anion oxygen. This is observed
to be the case. In view of the generally good agree-
ment with other structures of the magnitudes of ther-
mal motion of the other atoms in the salt it must be
concluded that the values for the displacements of
the water molecules are of comparable accuracy.

The anisotropy of the computed thermal ellipsoids
appears to be real. In all cases the maximum principal
axis is orientated in a direction which could be pre-
dicted from the observed structure. For example, the
anion oxygens which are bonded to only one Mo atom
(O(7)-0(12)) would be predicted to have the maximum
displacement approximately normal to the Mo—O bond
and this is found to be true for all of them. On the
basis of the proposed hydrogen-bonding scheme O(15)
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is coordinated to three atoms. This situation would
predict a marked anisotropy with the maximum prin-
cipal axis approximately normal to the plane defined
by the three coordinating atoms and this is what is
found. The O(14) atom provides the same situation,
but its coordination was chosen to yield agreement.
The distorted octahedron around Na(1) has one centro-
symmetrically related pair of faces which are appre-
ciably larger than the other octahedral faces. The
direction defined by the centers of these large opposing
faces would be predicted to be a direction of large
thermal displacement. It is observed that Na(l) has a
very elongated thermal ellipsoid with the maximum
principal axis in the predicted direction. This con-
sistent agreement appears to justify considerable con-
fidence in the accuracy of the present structure deter-
mination.

Acknowledgment.—I wish to express my apprecia-
tion to Professors L. C. W. Baker and J. V. Silverton of
Georgetown University for suggesting the problem and
their continued interest and assistance during the
solution. Special thanks are due to F. A. Mauer of the
National Bureau of Standards for his assistance with
the data collection and to Dr. D. E. Appleman of the
U. 8. Geological Survey for performing the piezoelectric
tests.

CONTRIBUTION FROM THE MALLINCKRODT LABORATORY, DEPARTMENT OF CHEMISTR\’,

The Crystal and Molecular Structure of

HARVARD UNIVERSITY, CAMBRIDGE, MASSACHUSETTS 02138

Acenaphthylenediiron Pentacarbonyl, C,,;H;Fe,(CO);

By MELVYN R. CHURCHILL! anp JOHN WORMALD

Received December 18, 1969

Acenaphthylenediiron pentacarbonyl, Ci2HsFe (CO)s, crystallizes in the centrosyminetric monoclinic space group P2,/n
(Can%; no. 14) with ¢ = 10.056 =+ 0.007 A, b = 16.089 3= 0.010 A, ¢ = 9.376 == 0.006 10&, B = 91.53 3= 0.09°, pobsa = 1.74 +
0.03 g cm ™3, and pealea = 1.769 g cm ™% for Z = 4. A single-crystal X-ray diffraction study of this complex has been com-

pleted, using counter data to sin § = 0.40 (Mo Ka radiation).
discrepancy index being Rr = 6,719, for 1791 independent nonzero reflections
units of Ci;3HzFey(CO); separated by normal van der Waals distances.

All atoms, including hydrogens, have been located, the final
The crystal consists of distinct molecular
The molecule consists of a modified acenaphthylene

ligand in which the carbon atoms of the five-membered ring form a w-cyclopentadienyl system which is bonded to an Fe-
(CO); group, while the three atoms C(5), C(10), and C(6) participate in a w-allyl linkage to an Fe(CO); group. The two
iron atoms are mutually linked vie a bond 2.769 A in length.

Introduction

Recent structural studies on the azulene—metal—
carbonyl complexes CioHgFea(CO)g,2 CipHsM 02 (CO)a,3 8
[(i-C3H7) (CHs)zCloHa]MOz(CO)G,3 8 [ClngMO(CO) 3~
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CH;l,," CupHsMny(CO)g,®  (CyHg)oFes(CO)yy,®  and
[(CH,)3C10H;]R1,(CO) ¥ have indicated that a domi-
nant feature of azulene-to-metal bonding is the use of
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